您现在的位置是:亿华云 > IT科技
两个简单的代码片段让你的图表动起来
亿华云2025-10-09 15:34:46【IT科技】3人已围观
简介www.ydisp.cn/oss/202207/13/8462895260eac1d4c5b082f8e14dd24e53c0c9.jpg" style="width: 600px; visibili
Python中有许多用于绘制图形的简单库。Matplotlib,代段让的图 Seaborn, Bokeh, Plotly等等。
但是码片我们绘图的目的是要向听众和要传递的信息。如果你的表动图能够动起来那么他们肯定会让听众在看第一眼的时候就印象深刻。但是简单并不是每个图形或数据集都适合动画。一般情况下,代段让的图动画对时间序列来说非常有效。码片例如,表动根据时间变化进行数据的简单对比。
Plotly ExpressPlotly Express,代段让的图可以直接为我们创建动态图表:
import plotly.express as px
import pandas as pd
import numpy as np让我们在数据集中创建一些值。码片
df = pd.DataFrame( { week: np.random.randint(1,表动21, size=200),
P1: np.random.randint(10,220, size=200),
P2: np.random.randint(15,200, size=200),
P3: np.random.randint(10,490, size=200),
P4: np.random.randint(10,980, size=200) } )
df = pd.DataFrame( { week: np.random.randint(1,21, size=200),
P1: np.random.randint(10,220, size=200),
P2: np.random.randint(15,200, size=200),
P3: np.random.randint(10,490, size=200),
P4: np.random.randint(10,980, size=200) } )现在我们可以绘制一个动画图来查看产品按周的变化情况。
创建散点图动画也同样简单。简单
fig = px.scatter(df,代段让的图 x="week", y="sales", animation_frame="week", animation_group="product", size="sales", color="product", hover_name="product", range_x=[0,20], range_y=[0,800])
fig.update_layout(height=600, width=1000)如果你向我一样是matplot和seaborn的粉丝,b2b供应网并且不太喜欢用Plotly的码片话,那么可以试试这个库。这个库的作用是创建一系列绘图,并将它们放在一个帧序列中并创建一个动态的gif图。
首先,还是获取一些用于绘图的时间序列数据。
import seaborn as sns
df = sns.load_dataset(flights)接下来创建一个函数,该函数将为每个观察创建一个绘图。
@gif.frame
def plot_flights(df, i):
df = df.copy()
# Get the year for the plot title
yr = df[year][i]
# Force X axis to be entirely plotted at once
df.iloc[i:] = np.nan
#Plot
ax = df.plot(x=month, y= passengers, legend=False,
style="o-", figsize=(20,10))
ax.set_title(f"Air Passengers { yr}", size=20)
ax.set_xlabel("Months")
ax.set_ylabel("Number of Passengers")@gif.frame是GIF库用来创建帧序列的装饰器。
df.iloc[i:] = np.nan将把所有未来的数据转换到NA。这是一种每次只绘制一个值的编程方式(i=0所有都为nan, i=1,只绘制索引0,i=2,只绘制0和1…),通过这种方法我们可以端到端绘制X轴,因为在动画期间是不会改变的。这样也可以保持图表的大小不变,使其更容易观看。企商汇
现在我们使用函数创建一个循环来创建帧。
frames = []
for i in range(df.shape[0]):
frame = plot_flights(df, i)
frames.append(frame)最后,保存生成的GIF图像。
gif.save(frames, gif_example.gif, duration=180)看,是不是很简单
最后总结动画图是一个很有影响力的展示方法,但是并不是所有的图都适合动画化。我们应该根据实际的情况来选择是否需要创建动画图,因为动画图并不是深入分析的最佳选择他只是在视觉上有一些更大的冲击,所以当你需要观察、比较和理解时也许静态图是更好的选择。
要创建动图,我建议您使用gif库,因为对于这种图形类型,它比plotly更简单(因为我个人更喜欢seaborn,哈)。亿华云
很赞哦!(99)
相关文章
- 域名资源有限,好域名更是有限,但机会随时都有,这取决于我们能否抓住机会。一般观点认为,国内域名注册太深,建议优先考虑外国注册人。外国注册人相对诚实,但价格差别很大,从几美元到几十美元不等。域名投资者应抓住机遇,尽早注册国外域名。
- For-else:Python中一个奇怪但有用的特性
- 斯坦福推出 mini 型 VR 眼镜:两个镜片会突出两条电路带
- 程序员积累的编程知识十年后有多少变得没用?
- 小白注册网站域名该怎么办?有什么步骤?
- 基于开源方案构建统一的文件在线预览与office协同编辑平台的架构与实现历程
- Replication(下):事务,一致性与共识
- 替代ELK:ClickHouse+Kafka+FlieBeat才是最绝的
- 公司和个人选域名方法一样吗?有什么不同?
- 超强图解Pandas 18招,墙裂建议收藏!