您现在的位置是:亿华云 > 应用开发
十个常用的损失函数解释以及Python代码实现
亿华云2025-10-09 12:55:04【应用开发】4人已围观
简介什么是损失函数?损失函数是一种衡量模型与数据吻合程度的算法。损失函数测量实际测量值和预测值之间差距的一种方式。损失函数的值越高预测就越错误,损失函数值越低则预测越接近真实值。对每个单独的观测(数据点)
什么是个常损失函数?
损失函数是一种衡量模型与数据吻合程度的算法。损失函数测量实际测量值和预测值之间差距的损失一种方式。损失函数的函数值越高预测就越错误,损失函数值越低则预测越接近真实值。解释及对每个单独的码实观测(数据点)计算损失函数。将所有损失函数(loss function)的个常值取平均值的函数称为代价函数(cost function),更简单的损失理解就是损失函数是针对单个样本的,而代价函数是函数针对所有样本的。
损失函数与度量指标
一些损失函数也可以被用作评价指标。解释及但是码实损失函数和度量指标(metrics)有不同的目的。虽然度量指标用于评估最终模型并比较不同模型的个常性能,但损失函数在模型构建阶段用作正在创建的损失模型的优化器。损失函数指导模型如何最小化误差。函数
也就是云服务器解释及说损失函数是知道模型如何训练的,而度量指标是码实说明模型的表现的。
为什么要用损失函数?
由于损失函数测量的是预测值和实际值之间的差距,因此在训练模型时可以使用它们来指导模型的改进(通常的梯度下降法)。在构建模型的过程中,如果特征的权重发生了变化得到了更好或更差的预测,就需要利用损失函数来判断模型中特征的权重是否需要改变,以及改变的方向。
我们可以在机器学习中使用各种各样的损失函数,这取决于我们试图解决的问题的类型、数据质量和分布以及我们使用的算法,下图为我们整理的10个常见的高防服务器损失函数:
回归问题
1、均方误差(MSE)均方误差是指所有预测值和真实值之间的平方差,并将其平均值。常用于回归问题。
def MSE (y, y_predicted):sq_error = (y_predicted - y) ** 2sum_sq_error = np.sum(sq_error)mse = sum_sq_error/y.sizereturn mse2、平均绝对误差(MAE)作为预测值和真实值之间的绝对差的平均值来计算的。当数据有异常值时,这是比均方误差更好的测量方法。
def MAE (y, y_predicted):error = y_predicted - yabsolute_error = np.absolute(error)total_absolute_error = np.sum(absolute_error)mae = total_absolute_error/y.sizereturn mae3、均方根误差(RMSE)这个损失函数是均方误差的平方根。如果我们不想惩罚更大的错误,这是一个理想的方法。
def RMSE (y, y_predicted):sq_error = (y_predicted - y) ** 2total_sq_error = np.sum(sq_error)mse = total_sq_error/y.sizermse = math.sqrt(mse)return rmse4、平均偏差误差(MBE)类似于平均绝对误差但不求绝对值。这个损失函数的缺点是负误差和正误差可以相互抵消,所以当研究人员知道误差只有一个方向时,应用它会更好。
def MBE (y, y_predicted):error = y_predicted - ytotal_error = np.sum(error)mbe = total_error/y.sizereturn mbe5、Huber损失Huber损失函数结合了平均绝对误差(MAE)和均方误差(MSE)的香港云服务器优点。这是因为Hubber损失是一个有两个分支的函数。一个分支应用于符合期望值的MAE,另一个分支应用于异常值。Hubber Loss一般函数为:
这里的
二元分类
6、最大似然损失(Likelihood Loss/LHL)该损失函数主要用于二值分类问题。将每一个预测值的概率相乘,得到一个损失值,相关的代价函数是所有观测值的平均值。让我们用以下二元分类的示例为例,其中类别为[0]或[1]。如果输出概率等于或大于0.5,则预测类为[1],否则为[0]。输出概率的示例如下:
[0.3 , 0.7 , 0.8 , 0.5 , 0.6 , 0.4]
对应的预测类为:
[0 , 1 , 1 , 1 , 1 , 0]
而实际的类为:
[0 , 1 , 1 , 0 , 1 , 0]
现在将使用真实的类和输出概率来计算损失。如果真类是[1],我们使用输出概率,如果真类是[0],我们使用1-概率:
((1–0.3)+0.7+0.8+(1–0.5)+0.6+(1–0.4)) / 6 = 0.65
Python代码如下:
def LHL (y, y_predicted):likelihood_loss = (y * y_predicted) + ((1-y) * (y_predicted))total_likelihood_loss = np.sum(likelihood_loss)lhl = - total_likelihood_loss / y.sizereturn lhl7、二元交叉熵(BCE)这个函数是对数的似然损失的修正。对数列的叠加可以惩罚那些非常自信但是却错误的预测。二元交叉熵损失函数的一般公式为:
— (y . log (p) + (1 — y) . log (1 — p))
让我们继续使用上面例子的值:
输出概率= [0.3、0.7、0.8、0.5、0.6、0.4]
实际的类= [0,1,1,0,1,0]
— (0 . log (0.3) + (1–0) . log (1–0.3)) = 0.155
— (1 . log(0.7) + (1–1) . log (0.3)) = 0.155
— (1 . log(0.8) + (1–1) . log (0.2)) = 0.097
— (0 . log (0.5) + (1–0) . log (1–0.5)) = 0.301
— (1 . log(0.6) + (1–1) . log (0.4)) = 0.222
— (0 . log (0.4) + (1–0) . log (1–0.4)) = 0.222
那么代价函数的结果为:
(0.155 + 0.155 + 0.097 + 0.301 + 0.222 + 0.222) / 6 = 0.192
Python的代码如下:
def BCE (y, y_predicted):ce_loss = y*(np.log(y_predicted))+(1-y)*(np.log(1-y_predicted))total_ce = np.sum(ce_loss)bce = - total_ce/y.sizereturn bce8、Hinge Loss 和 Squared Hinge Loss (HL and SHL)Hinge Loss被翻译成铰链损失或者合页损失,这里还是以英文为准。
Hinge Loss主要用于支持向量机模型的评估。错误的预测和不太自信的正确预测都会受到惩罚。 所以一般损失函数是:
l(y) = max (0 , 1 — t . y)
这里的t是真实结果用[1]或[-1]表示。
使用Hinge Loss的类应该是[1]或[-1](不是[0])。为了在Hinge loss函数中不被惩罚,一个观测不仅需要正确分类而且到超平面的距离应该大于margin(一个自信的正确预测)。如果我们想进一步惩罚更高的误差,我们可以用与MSE类似的方法平方Hinge损失,也就是Squared Hinge Loss。
如果你对SVM比较熟悉,应该还记得在SVM中,超平面的边缘(margin)越高,则某一预测就越有信心。如果这块不熟悉,则看看这个可视化的例子:
如果一个预测的结果是1.5,并且真正的类是[1],损失将是0(零),因为模型是高度自信的。
loss= Max (0,1 - 1* 1.5) = Max (0, -0.5) = 0
如果一个观测结果为0(0),则表示该观测处于边界(超平面),真实的类为[-1]。损失为1,模型既不正确也不错误,可信度很低。
loss = max (0 , 1–(-1) * 0) = max (0 , 1) = 1
如果一次观测结果为2,但分类错误(乘以[-1]),则距离为-2。损失是3(非常高),因为我们的模型对错误的决策非常有信心(这个是绝不能容忍的)。
loss = max (0 , 1 — (-1) . 2) = max (0 , 1+2) = max (0 , 3) = 3
python代码如下:
#Hinge Lossdef Hinge (y, y_predicted):hinge_loss = np.sum(max(0 , 1 - (y_predicted * y)))return hinge_loss#Squared Hinge Lossdef SqHinge (y, y_predicted):sq_hinge_loss = max (0 , 1 - (y_predicted * y)) ** 2total_sq_hinge_loss = np.sum(sq_hinge_loss)return total_sq_hinge_loss多分类
9、交叉熵(CE)在多分类中,我们使用与二元交叉熵类似的公式,但有一个额外的步骤。首先需要计算每一对[y, y_predicted]的损失,一般公式为:
如果我们有三个类,其中单个[y, y_predicted]对的输出是:
这里实际的类3(也就是值=1的部分),我们的模型对真正的类是3的信任度是0.7。计算这损失如下:
Loss = 0 . log (0.1) + 0 . log (0.2) + 1 . log (0.7) = -0.155
为了得到代价函数的值,我们需要计算所有单个配对的损失,然后将它们相加最后乘以[-1/样本数量]。代价函数由下式给出:
使用上面的例子,如果我们的第二对:
Loss = 0 . log (0.4) + 1. log (0.4) + 0. log (0.2) = -0.40
那么成本函数计算如下:
使用Python的代码示例可以更容易理解:
def CCE (y, y_predicted):cce_class = y * (np.log(y_predicted))sum_totalpair_cce = np.sum(cce_class)cce = - sum_totalpair_cce / y.sizereturn cce10、Kullback-Leibler 散度 (KLD)又被简化称为KL散度,它类似于分类交叉熵,但考虑了观测值发生的概率。 如果我们的类不平衡,它特别有用。
以上就是常见的10个损失函数,希望对你有所帮助。
很赞哦!(48429)
相关文章
- 域名资源有限,好域名更是有限,但机会随时都有,这取决于我们能否抓住机会。一般观点认为,国内域名注册太深,建议优先考虑外国注册人。外国注册人相对诚实,但价格差别很大,从几美元到几十美元不等。域名投资者应抓住机遇,尽早注册国外域名。
- 2021年要了解的34种JavaScript优化技术
- Python调试的几种方式
- 教你五分钟开发一款桌面版应用
- 尽量不要在域名中出现特殊字符,这样的域名很容易导致访问者输入错误,同时给人留下不专业的印象,降低网站的可信度,并流失大量潜在客户。
- 一篇文章带你了解Django Form组件(入门篇)
- CES 2021汇总:这些VR/AR产品值得期待
- Spring中那些让你爱不释手的代码技巧
- 域名不仅仅是一个简单的网站。对于有长远眼光的公司来说,在运营网站之前确定一个优秀的域名对有长远眼光的公司来说是非常重要的。这对今后的市场营销、产品营销和企业品牌建设都具有十分重要的意义。优秀的域名是企业在市场竞争中获得持久优势的利器。
- 鸿蒙HarmonyOS应用开发项目实战-在线课堂TV(二)