您现在的位置是:亿华云 > 系统运维

训练模型的保存与加载

亿华云2025-10-04 19:57:25【系统运维】8人已围观

简介1.目的:将训练好的模型保存下来,已备下次使用,节省训练时间,提高效率2.API:from sklearn.externals import joblib保存:joblib.dump(rf,"test

  1.目的训练:

  将训练好的模型保存下来,源码库已备下次使用,模型节省训练时间,高防服务器存加提高效率

训练模型的保存与加载

  2.API:

训练模型的保存与加载

  from sklearn.externals import joblib

训练模型的保存与加载

  保存:

  joblib.dump(rf,训练"test.pkl")

  加载:

  estimator = joblib.load("test.pkl")

  3.Python代码实现:

  # -*- coding: UTF-8 -*-

  @Author :Jason

  波士顿房价预测,将模型保存到

  from sklearn.datasets import load_boston

  from sklearn.model_selection import train_test_split

  from sklearn.preprocessing import StandardScaler

  from sklearn.linear_model import Ridge

  from sklearn.metrics import mean_squared_error

  from sklearn.externals import joblib

  def model_save_fetch():

  """

  岭回归对波士顿房价进行预测

  :return:

  """

  # 1)获取数据

  boston = load_boston()

  print("特征数量:\n",模型 boston.data.shape)

  # 2)划分数据集 郑州妇科医院哪家好 http://fk.zyfuke.com/

  x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22)

  # 3)标准化

  transfer = StandardScaler()

  x_train = transfer.fit_transform(x_train)

  x_test = transfer.transform(x_test)

  # # 4)预估器

  # estimator = Ridge(alpha=0.5, max_iter=10000)

  # estimator.fit(x_train, y_train)

  #

  # # 保存模型

  # joblib.dump(estimator, "./files/test.pkl")

  # 加载模型

  estimator = joblib.load("./files/test.pkl")

  # 5)得出模型

  print("岭回归-权重系数为:\n", estimator.coef_)

  print("岭回归-偏置为:\n", estimator.intercept_)

  # 6)模型评估

  y_predict = estimator.predict(x_test)

  print("预测房价:\n", y_predict)

  error = mean_squared_error(y_test, y_predict)

  print("岭回归-均方误差为:\n", error)

  return None

  if __name__ == "__main__":

  model_save_fetch()

源码下载

很赞哦!(64355)