您现在的位置是:亿华云 > IT科技类资讯

手把手教你玩多数据源动态切换!

亿华云2025-10-02 18:55:00【IT科技类资讯】9人已围观

简介为了提高应用的可靠性,多数据源现在也很常见,数据库可以搭建双 M 结构,这个松哥之前也发文和大家分享过如何搭建双 M 结构的主从备份?,那么 Java 代码里该如何操作多数据源呢

为了提高应用的手把手教数据可靠性,多数据源现在也很常见,玩多数据库可以搭建双 M 结构,源动这个松哥之前也发文和大家分享过如何搭建双 M 结构的态切主从备份?,那么 Java 代码里该如何操作多数据源呢?手把手教数据

我在 19 年的时候写过几篇文章教大家配置 JdbcTemplate、MyBatis 以及 JPA 中的玩多多数据源(公众号江南一点雨后台回复 666 有相关的资料),不过那几篇文章的源动整体思路都是弄多个 Dao 层实例,然后手动选择用哪个实例,态切这样总感觉不太方便。手把手教数据

手把手教你玩多数据源动态切换!

MyBatis-Plus 也提供了相应的玩多工具,感兴趣的源动小伙伴可以自行尝试。

手把手教你玩多数据源动态切换!

今天我想带领小伙伴们,态切利用 AOP 的手把手教数据思想,自己来写一个简单的玩多多数据源切换工具。

手把手教你玩多数据源动态切换!

1. 预备知识

想要自定义动态数据源切换,源动得先了解一个类 AbstractRoutingDataSource:

AbstractRoutingDataSource 是在 Spring2.0.1 中引入的(注意是 Spring2.0.1 不是 Spring Boot2.0.1,所以这其实也算是 Spring 一个非常古老的特性了), 该类充当了 DataSource 的香港云服务器路由中介,它能够在运行时, 根据某种 key 值来动态切换到真正的 DataSource 上。

大致的用法就是你提前准备好各种数据源,存入到一个 Map 中,Map 的 key 就是这个数据源的名字,Map 的 value 就是这个具体的数据源,然后再把这个 Map 配置到 AbstractRoutingDataSource 中,最后,每次执行数据库查询的时候,拿一个 key 出来,AbstractRoutingDataSource 会找到具体的数据源去执行这次数据库操作。

大致思路就是这样。

接下来我们就来看看怎么玩。

2. 创建项目

首先我们创建一个 Spring Boot 项目,引入 Web、MyBatis 以及 MySQL 依赖,项目创建成功之后,再手动加入 Druid 和 AOP 依赖,如下:

org.springframework.boot

spring-boot-starter-aop

com.alibaba

druid-spring-boot-starter

1.2.9

</dependency>

这块呢其实没啥好说的,都是网站模板常规操作。

3. 配置文件

接下来我们创建一个 application-druid.yaml 用来配置我们的数据源信息,如下:

# 数据源配置

spring:

datasource:

type: com.alibaba.druid.pool.DruidDataSource

driverClassName: com.mysql.cj.jdbc.Driver

ds:

# 主库数据源,默认 master 不能变

master:

url: jdbc:mysql://127.0.0.1:3306/test08?useUnicode=true&characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&useSSL=false&serverTimezone=Asia/Shanghai

username: root

password: 123

# 从库数据源

slave:

url: jdbc:mysql://127.0.0.1:3306/test07?useUnicode=true&characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&useSSL=false&serverTimezone=Asia/Shanghai

username: root

password: 123

# 初始连接数

initialSize: 5

# 最小连接池数量

minIdle: 10

# 最大连接池数量

maxActive: 20

# 配置获取连接等待超时的时间

maxWait: 60000

# 配置间隔多久才进行一次检测,检测需要关闭的空闲连接,单位是毫秒

timeBetweenEvictionRunsMillis: 60000

# 配置一个连接在池中最小生存的时间,单位是毫秒

minEvictableIdleTimeMillis: 300000

# 配置一个连接在池中最大生存的时间,单位是毫秒

maxEvictableIdleTimeMillis: 900000

# 配置检测连接是否有效

validationQuery: SELECT 1 FROM DUAL

testWhileIdle: true

testOnBorrow: false

testOnReturn: false

druid:

webStatFilter:

enabled: true

statViewServlet:

enabled: true

# 设置白名单,不填则允许所有访问

allow:

url-pattern: /druid/

*

# 控制台管理用户名和密码

login-username: javaboy

login-password: 123456

filter:

stat:

enabled: true

# 慢SQL记录

log-slow-sql: true

slow-sql-millis: 1000

merge-sql: true

wall:

config:

multi-statement-allow: true

都是 Druid 的常规配置,也没啥好说的,唯一需要注意的是我们整个配置文件的格式。ds 里边配置我们的所有数据源,每个数据源都有一个名字,master 是默认数据源的名字,不可修改,源码库其他数据源都可以自定义名字。最后面我们还配置了 Druid 的监控功能,如果小伙伴们还不懂 Druid 的监控功能,可以查看Spring Boot 如何监控 SQL 运行情况?。

不过小伙伴们知道,YAML 配置不像 properties 配置可以通过 @PropertySource 注解加载自定义的配置文件,YAML 配置没有类似的加载机制。不过工具是死的人是活的,我们可以利用 Spring Boot 的 profile 机制来加载这个自定义的 application-druid.yaml 配置文件,具体做法就是在 application.yaml 中加一行配置,如下:

spring:

profiles:

active: druid

接下来我们还需要提供一个配置类,将这个配置文件的内容加载到配置类中,如下:

@ConfigurationProperties(prefix = "spring.datasource")

public class DruidProperties {

private int initialSize;

private int minIdle;

private int maxActive;

private int maxWait;

private int timeBetweenEvictionRunsMillis;

private int minEvictableIdleTimeMillis;

private int maxEvictableIdleTimeMillis;

private String validationQuery;

private boolean testWhileIdle;

private boolean testOnBorrow;

private boolean testOnReturn;

private Map> ds;

public DruidDataSource dataSource(DruidDataSource datasource) {

/** 配置初始化大小、最小、最大 */

datasource.setInitialSize(initialSize);

datasource.setMaxActive(maxActive);

datasource.setMinIdle(minIdle);

/** 配置获取连接等待超时的时间 */

datasource.setMaxWait(maxWait);

/** 配置间隔多久才进行一次检测,检测需要关闭的空闲连接,单位是毫秒 */

datasource.setTimeBetweenEvictionRunsMillis(timeBetweenEvictionRunsMillis);

/** 配置一个连接在池中最小、最大生存的时间,单位是毫秒 */

datasource.setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis);

datasource.setMaxEvictableIdleTimeMillis(maxEvictableIdleTimeMillis);

/

**

* 用来检测连接是否有效的sql,要求是一个查询语句,常用select x。如果validationQuery为null,testOnBorrow、testOnReturn、testWhileIdle都不会起作用。

*/

datasource.setValidationQuery(validationQuery);

/** 建议配置为true,不影响性能,并且保证安全性。申请连接的时候检测,如果空闲时间大于timeBetweenEvictionRunsMillis,执行validationQuery检测连接是否有效。 */

datasource.setTestWhileIdle(testWhileIdle);

/** 申请连接时执行validationQuery检测连接是否有效,做了这个配置会降低性能。 */

datasource.setTestOnBorrow(testOnBorrow);

/** 归还连接时执行validationQuery检测连接是否有效,做了这个配置会降低性能。 */

datasource.setTestOnReturn(testOnReturn);

return datasource;

}

public int getInitialSize() {

return initialSize;

}

public void setInitialSize(int initialSize) {

this.initialSize = initialSize;

}

public int getMinIdle() {

return minIdle;

}

public void setMinIdle(int minIdle) {

this.minIdle = minIdle;

}

public int getMaxActive() {

return maxActive;

}

public void setMaxActive(int maxActive) {

this.maxActive = maxActive;

}

public int getMaxWait() {

return maxWait;

}

public void setMaxWait(int maxWait) {

this.maxWait = maxWait;

}

public int getTimeBetweenEvictionRunsMillis() {

return timeBetweenEvictionRunsMillis;

}

public void setTimeBetweenEvictionRunsMillis(int timeBetweenEvictionRunsMillis) {

this.timeBetweenEvictionRunsMillis = timeBetweenEvictionRunsMillis;

}

public int getMinEvictableIdleTimeMillis() {

return minEvictableIdleTimeMillis;

}

public void setMinEvictableIdleTimeMillis(int minEvictableIdleTimeMillis) {

this.minEvictableIdleTimeMillis = minEvictableIdleTimeMillis;

}

public int getMaxEvictableIdleTimeMillis() {

return maxEvictableIdleTimeMillis;

}

public void setMaxEvictableIdleTimeMillis(int maxEvictableIdleTimeMillis) {

this.maxEvictableIdleTimeMillis = maxEvictableIdleTimeMillis;

}

public String getValidationQuery() {

return validationQuery;

}

public void setValidationQuery(String validationQuery) {

this.validationQuery = validationQuery;

}

public boolean isTestWhileIdle() {

return testWhileIdle;

}

public void setTestWhileIdle(boolean testWhileIdle) {

this.testWhileIdle = testWhileIdle;

}

public boolean isTestOnBorrow() {

return testOnBorrow;

}

public void setTestOnBorrow(boolean testOnBorrow) {

this.testOnBorrow = testOnBorrow;

}

public boolean isTestOnReturn() {

return testOnReturn;

}

public void setTestOnReturn(boolean testOnReturn) {

this.testOnReturn = testOnReturn;

}

public Map> getDs() {

return ds;

}

public void setDs(Map> ds) {

this.ds = ds;

}

}

这个配置类没啥好说的,我们配置的多个数据源我将之读取到了一个名为 ds 的 Map 中,将来就根据这个 Map 中的数据来构造数据源。

4. 加载数据

源接下来我们要根据配置文件来加载数据源。加载方式如下:

public interface DynamicDataSourceProvider {

String DEFAULT_DATASOURCE = "master";

/

**

* 加载所有的数据源

* @return

*/

MaploadDataSources();

}

@Configuration

@EnableConfigurationProperties(DruidProperties.class)

public class YamlDynamicDataSourceProvider implements DynamicDataSourceProvider {

@Autowired

DruidProperties druidProperties;

@Override

public MaploadDataSources() {

Mapds = new HashMap<>(druidProperties.getDs().size());

try {

Map> map = druidProperties.getDs();

SetkeySet = map.keySet();

for (String s : keySet) {

DruidDataSource dataSource = (DruidDataSource) DruidDataSourceFactory.createDataSource(map.get(s));

ds.put(s, druidProperties.dataSource(dataSource));

}

} catch (Exception e) {

e.printStackTrace();

}

return ds;

}

}

加载的核心工作在 YamlDynamicDataSourceProvider 类中完成的。该类中有一个 loadDataSources 方法表示读取所有的数据源对象。数据源的相关属性都在 druidProperties 对象中,我们先根据基本的数据库连接信息创建一个 DataSource 对象,然后再调用 druidProperties#dataSource 方法为这些数据源连接池配置其他的属性(最大连接数、最小空闲数等),最后,以 key-value 的形式将数据源存入一个 Map 集合中,每一个数据源的 key 就是你在 YAML 中配置的数据源名称。

5. 数据源切换

对于当前数据库操作使用哪个数据源?我们有很多种不同的设置方案,当然最为省事的办法是把当前使用的数据源信息存入到 ThreadLocal 中,ThreadLocal 的特点,简单说就是在哪个线程中存入的数据,在哪个线程才能取出来,换一个线程就取不出来了,这样可以确保多线程环境下的数据安全。

先来一个简单的工具类,如下:

public class DynamicDataSourceContextHolder {

public static final Logger log = LoggerFactory.getLogger(DynamicDataSourceContextHolder.class);

/

**

* 使用ThreadLocal维护变量,ThreadLocal为每个使用该变量的线程提供独立的变量副本,

* 所以每一个线程都可以独立地改变自己的副本,而不会影响其它线程所对应的副本。

*/

private static final ThreadLocalCONTEXT_HOLDER = new ThreadLocal<>();

/

**

* 设置数据源的变量

*/

public static void setDataSourceType(String dsType) {

log.info("切换到{ }数据源", dsType);

CONTEXT_HOLDER.set(dsType);

}

/

**

* 获得数据源的变量

*/

public static String getDataSourceType() {

return CONTEXT_HOLDER.get();

}

/

**

* 清空数据源变量

*/

public static void clearDataSourceType() {

CONTEXT_HOLDER.remove();

}

}

接下来我们自定义一个注解用来标记当前的数据源,如下:

@Retention(RetentionPolicy.RUNTIME)

@Target({ ElementType.METHOD, ElementType.TYPE})

public @interface DataSource {

String dataSourceName() default DynamicDataSourceProvider.DEFAULT_DATASOURCE;

@AliasFor("dataSourceName")

String value() default DynamicDataSourceProvider.DEFAULT_DATASOURCE;

}

这个注解将来加在 Service 层的方法上,使用该注解的时候,需要指定一个数据源名称,不指定的话,默认就使用 master 作为数据源。

我们还需要通过 AOP 来解析当前的自定义注解,如下:

@Aspect

@Order(1)

@Component

public class DataSourceAspect {

@Pointcut("@annotation(org.javaboy.demo.annotation.DataSource)"

+ "|| @within(org.javaboy.demo.annotation.DataSource)")

public void dsPc() {

}

@Around("dsPc()")

public Object around(ProceedingJoinPoint point) throws Throwable {

DataSource dataSource = getDataSource(point);

if (Objects.nonNull(dataSource)) {

DynamicDataSourceContextHolder.setDataSourceType(dataSource.dataSourceName());

}

try {

return point.proceed();

} finally {

// 销毁数据源 在执行方法之后

DynamicDataSourceContextHolder.clearDataSourceType();

}

}

/

**

* 获取需要切换的数据源

*/

public DataSource getDataSource(ProceedingJoinPoint point) {

MethodSignature signature = (MethodSignature) point.getSignature();

DataSource dataSource = AnnotationUtils.findAnnotation(signature.getMethod(), DataSource.class);

if (Objects.nonNull(dataSource)) {

return dataSource;

}

return AnnotationUtils.findAnnotation(signature.getDeclaringType(), DataSource.class);

}

}

首先,我们在 dsPc() 方法上定义了切点,我们拦截下所有带有 @DataSource 注解的方法,同时由于该注解也可以加在类上,如果该注解加在类上,就表示类中的所有方法都使用该数据源。

接下来我们定义了一个环绕通知,首先根据当前的切点,调用 getDataSource 方法获取到 @DataSource 注解,这个注解可能来自方法上也可能来自类上,方法上的优先级高于类上的优先级。如果拿到的注解不为空,则我们在 DynamicDataSourceContextHolder 中设置当前的数据源名称,设置完成后进行方法的调用;如果拿到的注解为空,那么就直接进行方法的调用,不再设置数据源了(将来会自动使用默认的数据源)。最后记得方法调用完成后,从 ThreadLocal 中移除数据源。

6. 定义动态数据源

接下来我们来自定义一个动态数据源:

public class DynamicDataSource extends AbstractRoutingDataSource {

DynamicDataSourceProvider dynamicDataSourceProvider;

public DynamicDataSource(DynamicDataSourceProvider dynamicDataSourceProvider) {

this.dynamicDataSourceProvider = dynamicDataSourceProvider;

Map

super.setTargetDataSources(targetDataSources);

super.setDefaultTargetDataSource(dynamicDataSourceProvider.loadDataSources().get(DynamicDataSourceProvider.DEFAULT_DATASOURCE));

super.afterPropertiesSet();

}

@Override

protected Object determineCurrentLookupKey() {

String dataSourceType = DynamicDataSourceContextHolder.getDataSourceType();

return dataSourceType;

}

}

这就是我们文章开头所说的 AbstractRoutingDataSource 了,该类有一个方法名为 determineCurrentLookupKey,当需要使用数据源的时候,系统会自动调用该方法,获取当前数据源的标记,如 master 或者 slave 或者其他,拿到标记之后,就可以据此获取到一个数据源了。

当我们配置 DynamicDataSource 的时候,需要配置两个关键的参数,一个是 setTargetDataSources,这个就是当前所有的数据源,把当前所有的数据源都告诉给 AbstractRoutingDataSource,这些数据源都是 key-value 的形式(将来根据 determineCurrentLookupKey 方法返回的 key 就可以获取到具体的数据源了);另一个方法是 setDefaultTargetDataSource,这个就是默认的数据源,当我们执行一个数据库操作的时候,如果没有指定数据源(例如 Service 层的方法没有加 @DataSource 注解),那么默认就使用这个数据源。

最后,再将这个 bean 注册到 Spring 容器中,如下:

@Configuration

public class DruidAutoConfiguration {

@Autowired

DynamicDataSourceProvider dynamicDataSourceProvider;

@Bean

DynamicDataSource dynamicDataSource() {

return new DynamicDataSource(dynamicDataSourceProvider);

}

/

**

* 去除数据源监控页面的广告

*

* @param properties

* @return

*/

@Bean

@ConditionalOnProperty(name = "spring.datasource.druid.statViewServlet.enabled", havingValue = "true")

public FilterRegistrationBean removeDruidFilterRegistrationBean(DruidStatProperties properties) {

// 获取web监控页面的参数

DruidStatProperties.StatViewServlet config = properties.getStatViewServlet();

// 提取common.js的配置路径

String pattern = config.getUrlPattern() != null ? config.getUrlPattern() : "/druid/*";

String commonJsPattern = pattern.replaceAll("\\*", "js/common.js");

// 创建filter进行过滤

Filter filter = new Filter() {

@Override

public void init(javax.servlet.FilterConfig filterConfig) throws ServletException {

}

@Override

public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain)

throws IOException, ServletException {

String text = Utils.readFromResource("support/http/resources/js/common.js");

text = text.replace("this.buildFooter();", "");

response.getWriter().write(text);

}

@Override

public void destroy() {

}

};

FilterRegistrationBean registrationBean = new FilterRegistrationBean();

registrationBean.setFilter(filter);

registrationBean.addUrlPatterns(commonJsPattern);

return registrationBean;

}

}

下面,我们还配置了一个过滤器,这个过滤器的目的是去除 Druid 监控页面的阿里广告。

7. 测试

好啦,大功告成,我们再来测试一下,写一个 UserMapper:

@Mapper

public interface UserMapper {

@Select("select count(*) from user")

Integer count();

}

一个很简单的数据库查询操作。

再来一个 service:

@Service

public class UserService {

@Autowired

UserMapper userMapper;

@DataSource("master")

public Integer master() {

return userMapper.count();

}

@DataSource("slave")

public Integer slave() {

return userMapper.count();

}

}

通过 @DataSource 注解来指定具体操作的数据源,如果没有使用该注解指定,默认就使用 master 数据源。

最后去单元测试中测一下,如下:

@SpringBootTest

class DynamicDatasourceDemoApplicationTests {

@Autowired

UserService userService;

@Test

void contextLoads() {

System.out.println("userService.master() = " + userService.master());

System.out.println("userService.slave() = " + userService.slave());

}

}

由于我这里 master 和 slave 分别对应了不同的库,这里查询会展示出不同的结果。

很赞哦!(45)