您现在的位置是:亿华云 > 系统运维

使用Python实现HIVE的UDF函数

亿华云2025-10-03 06:35:20【系统运维】5人已围观

简介在处理一些复杂逻辑时候,python这种面向过程的语言相比于SQL更符合人的思维方式。相信有不少同学曾经感慨,如果能用python处理数据库中的数据就好了。那么今天它来了。首先用python写处理复杂

在处理一些复杂逻辑时候,使用实现python这种面向过程的函数语言相比于SQL更符合人的思维方式。相信有不少同学曾经感慨,使用实现如果能用python处理数据库中的函数数据就好了。那么今天它来了。使用实现

首先用python写处理复杂逻辑的函数自定义的函数(一阳指),再将函数代码嵌入SQL(狮吼功)就能合并成了一整招:UDF

下面我用一个栗子来说明一些两者处理数据过程中的使用实现差异,在介绍栗子之前,函数先介绍一些with as。使用实现与python 创建函数或者类一样,函数with as 用于创建中间表

简单来做个介绍

select * from(select * from table where dt=2021-03-30)a 

可以写成

with a as (select * from table where dt=2021-03-30 ) select * from a 

简单的使用实现SQL看不出这样的优势(甚至有点多此一举),但是函数当逻辑复杂了之后我们就能看出这种语法的优势,他能从底层抽取中间表格,使用实现让我们只专注于当前使用的函数表格,进而可以将复杂的使用实现处理逻辑分解成简单的亿华云步骤。

如下面地表格记录了用户适用app过程中每个行为日志地时间戳,我们想统计一下用户今天用了几次app,以及每次的起始时间和结束时间是什么时候,这个问题怎么解呢?

SQL实现方式

首先用with as 构建一个中间表(注意看on 和 where条件)

with t1 as (select x.uid, case when x.rank=1 then y.timestamp_ms else x.timestamp_ms end as start_time, case when x.rank=1 then x.timestamp_ms else y.timestamp_ms end as end_time from (select uid, timestamp_ms, row_number()over(partition by uid order by timestamp_ms) rank from tmp.tmpx) x left outer join (select uid, timestamp_ms, row_number()over(partition by uid order by timestamp_ms) rank from tmp.tmpx) y on x.uid=y.uid and x.rank=y.rank-1 where x.rank=1 or y.rank is null or y.timestamp_ms-x.timestamp_ms>=300) 

首先我们用开窗函数错位相减,用where条件筛选出我们需要的列,其中

x.rank=1 抽取出第一行

y.rank is null 抽取最后一样

y.timestamp_ms-x.timestamp_ms>=300抽取满足条件的行,如下:

当然这个结果并不是我们要的结果,需要将上述表格中某一行数据的end-time和下一条数据的start-time结合起来起来,构造出时间段

好的,按照上面我们所说的那么下面我们不用关心底层的逻辑,将注意力专注于这张中间表t1

select a.uid,end_time as start_time,start_time as end_time from (select uid,start_time,row_number()over(partition by uid order by start_time) as rank from t1) a join (select uid,end_time,row_number()over(partition by uid order by end_time) as rank from t1)b on a.uid=b.uid and a.rank=b.rank+1 

同样,排序后错位相减,然后就可以打完收工了~

UDF实现方式

首先我们假设上述数据存储在csv中,

用python 处理本地文件data.csv,服务器托管按照python的处理方式写代码(这里就不一句句解释了,会python的同学可以跳过,不会的同学不妨自己动手写一下)

def life_cut(files): f=open(files) act_list=[] act_dict={ } for line in f:     line_list=line.strip().split()     key=tuple(line_list[0:1])     if key not in act_dict:         act_dict.setdefault(key,[])         act_dict[key].append(line_list[1])     else:         act_dict[key].append(line_list[1]) for k,v in act_dict.items():     k_str=k[0]+"\t"     start_time = v[0]     last_time=v[0]     i=1     while i<len(v)-1:         if int(v[i])-int(last_time)>=300:             print(k_str+"\t"+start_time+"\t"+v[i-1])             start_time=v[i]             last_time = v[i]             i=i+1         else:             last_time = v[i]             i=i+1     print(k_str+"\t"+start_time+"\t"+v[len(v)-1])     # print(k_str + "\t" + start_time + "\t" + v[i]) if __name__=="__main__": life_cut("data.csv") 

得到结果如下:

那么下面我们将上述函数写成udf的形式:

#!/usr/bin/env python # -*- encoding:utf-8 -*- import sys act_list=[] act_dict={ } for line in sys.stdin: line_list=line.strip().split("\t") key=tuple(line_list[0:1]) if key not in act_dict:     act_dict.setdefault(key,[])     act_dict[key].append(line_list[1]) else:     act_dict[key].append(line_list[1]) for k,v in act_dict.items(): k_str=k[0]+"\t" start_time = v[0] last_time=v[0] i=1 while i<len(v)-1:     if int(v[i])-int(last_time)>=300:       print(k_str+"\t"+start_time+"\t"+v[i-1])       start_time=v[i]       last_time = v[i]       i=i+1     else:       last_time = v[i]       i=i+1 print(k_str+"\t"+start_time+"\t"+v[len(v)-1]) 

这个变化过程的关键点是将 for line in f 替换成 for line in sys.stdin,其他基本上没什么变化

然后我们再来引用这个函数

先add这个函数的路径add file /xxx/life_cut.py 加载udf路径,然后再使用

select TRANSFORM (uid,timestamp_ms) USING "python life_cut.py" as (uid,start_time,end_time) from tmp.tmpx 

总结

从上述案例我们可以看出,

UDF和SQL的区别在于,在处理复杂逻辑时候,UDF相比SQL能更高效地组织起来逻辑并落地实现功能。UDF和普通脚本的关键区别所在在于将 for line in f 替换成 for line in sys.stdin,常规函数一般是将文件一行行读入,UDF是从标准输入一行行加载数据。希望大家平时没事的时候好好练练python,切莫书到用时方恨少。

高防服务器

很赞哦!(43)