本着“将通信科普到底”的再聊中心原则,今天,数据我再继续聊一下这个话题。网络 故事还是再聊中心要从头开始说起。 1973年夏天
,数据两名年轻的网络科学家(温顿·瑟夫和罗伯特卡恩)开始致⼒于在新⽣的计算机⽹络中,寻找⼀种能够在不同机器之间进行通讯的再聊中心⽅法 。 不久后 ,数据在一本黄⾊的网络便签本上 ,他们画出了TCP/IP协议族的再聊中心原型
。模板下载 几乎在同时,数据施乐公司的网络梅特卡夫和博格思,发明了以太网(Ethernet)。再聊中心 我们现在都知道
,数据互联网的网络最早原型
,是老美搞出来的ARPANET(阿帕网)。 ARPANET最开始用的协议超烂 ,满足不了计算节点规模增长的需求。于是,云计算70年代末,大佬们将ARPANET的核心协议替换成了TCP/IP(1978年)。 进入80年代末
,在TCP/IP技术的加持下 ,ARPANET迅速扩大,并衍生出了很多兄弟姐妹
。这些兄弟姐妹互相连啊连啊,就变成了举世闻名的互联网。 可以说,TCP/IP技术和以太网技术,是互联网早期崛起的基石。免费模板它们成本低廉 ,结构简单,便于开发 、部署,为计算机网络的普及做出了巨大贡献
。 但是后来 ,随着网络规模的急剧膨胀
,传统TCP/IP和以太网技术开始显现疲态 ,无法满足互联网大带宽、高速率的发展需求 。 最开始出现问题的,香港云服务器是存储。 早期的存储
,大家都知道,就是机器内置硬盘
,通过IDE、SCSI 、SAS等接口,把硬盘连到主板上,通过主板上的总线(BUS)
,实现CPU、内存对硬盘数据的存取。服务器租用 后来,存储容量需求越来越大,再加上安全备份的考虑(需要有RAID1/RAID5),硬盘数量越来越多,若干个硬盘搞不定
,服务器内部也放不下 。于是
,就有了磁阵 。 磁阵,磁盘阵列 磁阵就是专门放磁盘的设备,一口子插几十块那种。 硬盘数据存取
,源码下载一直都是服务器的瓶颈 。开始的时候 ,用的是网线或专用电缆连接服务器和磁阵
,很快发现不够用
。于是,就开始用光纤
。这就是FC通道(Fibre Channel,光纤通道) 。 2000年左右,光纤通道还是比较高大上的技术,成本不低。 当时
,公共通信网络(骨干网)的光纤技术处于在SDH 155M 、622M的阶段
,2.5G的SDH和波分技术才刚起步 ,没有普及 。后来,光纤才开始爆发 ,容量开始迅速跃升,向10G(2003)、40G(2010)
、100G(2010) 、400G(现在)的方向发展。 光纤不能用于数据中心的普通网络 ,那就只能继续用网线,还有以太网
。 好在那时服务器之间的通信要求还没有那么高。100M和1000M的网线 ,勉强能满足一般业务的需求。2008年左右,以太网的速率才勉强达到了1Gbps的标准。 2010年后,又出幺蛾子 。 除了存储之外 ,因为云计算 、图形处理
、人工智能
、超算还有比特币等乱七八糟的原因 ,人们开始盯上了算力。 摩尔定律的逐渐疲软
,已经无法支持CPU算力的提升需求。牙膏越来越难挤,于是,GPU开始崛起
。使用显卡的GPU处理器进行计算 ,成为了行业的主流趋势。 得益于AI的高速发展,各大企业还搞出了AI芯片
、APU 、xPU啊各自五花八门的算力板卡
。 算力极速膨胀(100倍以上),带来的直接后果
,就是服务器数据吞吐量的指数级增加。 除了AI带来的变态算力需求之外,数据中心还有一个显著的变化趋势,那就是服务器和服务器之间的数据流量急剧增加
。 互联网高速发展、用户数猛涨 ,传统的集中式计算架构无法满足需求,开始转变为分布式架构。 举例来说,现在618 ,大家都在血拼 。百八十个用户,一台服务器就可以,千万级亿级,肯定不行了。所以,有了分布式架构,把一个服务,放在N个服务器上 ,分开算。 分布式架构下
,服务器之间的数据流量大大增加了。数据中心内部互联网络的流量压力陡增,数据中心与数据中心之间也是一样。 这些横向(专业术语叫东西向)的数据报文
,有时候还特别大 ,一些图形处理的数据,包大小甚至是Gb级别。 综上原因,传统以太网根本搞不定这么大的数据传输带宽和时延(高性能计算,对时延要求极高)需求
。所以,少数厂家就搞了一个私有协议的专用网络通道技术
,也就是Infiniband网络(直译为“无限带宽”技术,缩写为IB)。 FC vs IB vs 以太网 IB技术时延极低,但是造价成本高 ,而且维护复杂,和现有技术都不兼容。所以,和FC技术一样,只在特殊的需求下使用。 算力高速发展的同时,硬盘不甘寂寞,搞出了SSD固态硬盘 ,取代机械硬盘 。内存嘛,从DDR到DDR2
、DDR3 、DDR4甚至DDR5,也是一个劲的猥琐发育,增加频率,增加带宽。 处理器 、硬盘和内存的能力爆发,最终把压力转嫁到了网卡和网络身上。 学过计算机网络基础的同学都知道 ,传统以太网是基于“载波侦听多路访问/冲突检测(CSMA/CD)”的机制,极容易产生拥塞
,导致动态时延升高
,还经常发生丢包。 TCP/IP协议的话,服役时间实在太长 ,都40多年的老技术了,毛病一大堆。 举例来说
,TCP协议栈在接收/发送报文时,内核需要做多次上下文切换,每次切换需要耗费5us~10us左右的时延。另外 ,还需要至少三次的数据拷贝和依赖CPU进行协议封装。 这些协议处理时延加起来,虽然看上去不大,十几微秒,但对高性能计算来说,是无法忍受的。 除了时延问题外,TCP/IP网络需要主机CPU多次参与协议栈内存拷贝。网络规模越大 ,带宽越高,CPU在收发数据时的调度负担就越大
,导致CPU持续高负载。 按照业界测算数据:每传输1bit数据需要耗费1Hz的CPU,那么当网络带宽达到25G以上(满载)的时候,CPU要消费25GHz的算力,用于处理网络 。大家可以看看自己的电脑CPU
,工作频率是多少。 那么
,是不是干脆直接换个网络技术就行呢 ? 不是不行,是难度太大。 CPU、硬盘和内存,都是服务器内部硬件
,换了就换了,和外部无关。 但是通信网络技术,是外部互联技术
,是要大家协商一起换的
。我换了
,你没换,网络就嗝屁了。 全世界互联网同时统一切换技术协议,你觉得可不可能? 不可能
。所以,就像现在IPv6替换IPv4 ,就是循序渐进,先双栈(同时支持v4和v6)
,然后再慢慢淘汰v4。 数据中心网络的物理通道,光纤替换网线 ,还稍微容易一点,先小规模换,再逐渐扩大 。换了光纤后
,网络的速度和带宽上的问题,得以逐渐缓解
。 网卡能力不足的问题
,也比较好解决
。既然CPU算不过来,那网卡就自己算呗。于是 ,就有了现在很火的智能网卡
。某种程度来说 ,这就是算力下沉。 搞5G核心网的同事应该很熟悉,5G核心网媒体面网元UPF
,承担了无线侧上来的所有业务数据
,压力极大。 现在
,UPF网元就采用了智能网卡技术,由网卡自己进行协议处理
,缓解CPU的压力,流量吞吐还更快
。 如何解决数据中心通信网络架构的问题呢?专家们想了半天
,还是决定硬着头皮换架构
。他们从服务器内部通信架构的角度,重新设计一个方案
。 在新方案里,应用程序的数据,不再经过CPU和复杂的操作系统
,直接和网卡通信。 这就是新型的通信机制——RDMA(Remote Direct Memory Access,远程直接数据存取)
。 RDMA相当于是一个“消灭中间商”的技术,或者说“走后门”技术。 RDMA的内核旁路机制
,允许应用与网卡之间的直接数据读写,将服务器内的数据传输时延降低到接近1us。同时
,RDMA的内存零拷贝机制,允许接收端直接从发送端的内存读取数据 ,极大的减少了CPU的负担,提升CPU的效率。RDMA的能力远远强于TCP/IP
,逐渐成为主流的网络通信协议栈 ,将来一定会取代TCP/IP。 RDMA有两类网络承载方案,分别是专用InfiniBand和传统以太网络
。 RDMA最早提出时,是承载在InfiniBand网络中。 但是 ,InfiniBand是一种封闭架构,交换机是特定厂家提供的专用产品,采用私有协议,无法兼容现网 ,加上对运维的要求过于复杂
,并不是用户的合理选择
。 于是
,专家们打算把RDMA移植到以太网上。 比较尴尬的是,RDMA搭配传统以太网,存在很大问题。 RDMA对丢包率要求极高。0.1%的丢包率
,将导致RDMA吞吐率急剧下降 。2%的丢包率
,将使得RDMA的吞吐率下降为0
。 InfiniBand网络虽然贵,但是可以实现无损无丢包。所以RDMA搭配InfiniBand,不需要设计完善的丢包保护机制。 现在好了,换到传统以太网环境,以太网的人生态度就是两个字——“摆烂” 。以太网发包
,采取的是“尽力而为”的原则,丢包是家常便饭,丢了就再传。 于是,专家们必须解决以太网的丢包问题,才能实现RDMA向以太网的移植。再于是 ,就有了前天文章提到的,华为的超融合数据中心网络智能无损技术。 说白了,就是让以太网做到零丢包
,然后支撑RDMA
。有了RDMA ,就能实现超融合数据中心网络
。 关于零丢包技术的细节,我不再赘述 ,大家看前天那篇文章(再给一遍链接:这里) 。 值得一提的是,引入AI的网络智能无损技术是华为的首创,但超融合数据中心
,是公共的概念
。除了华为之外 ,别的厂家(例如深信服、联想等)也讲超融合数据中心 ,而且,这个概念在2017年就很热了
。 准确来说
,超融合就是一张网络,通吃HPC高性能计算、存储和一般业务等多种业务类型。处理器、存储
、通信,全部都是超融合管理的资源,大家平起平坐
。 超融合不仅要在性能上满足这些低时延、大带宽的变态需求,还要有低成本 ,不能太贵 ,也不能太难维护。 未来,数据中心在整体网络架构上
,就是叶脊网络一条路走到黑(到底什么是叶脊网络?)
。路由交换调度上 ,SDN
、IPv6
、SRv6慢慢发展
。微观架构上 ,RDMA技术发展,替换TCP/IP
。物理层上
,全光继续发展
,400G、800G 、1.2T…我个人臆测
,目前电层光层的混搭,最终会变成光的大一统 。光通道到全光交叉之后
,就是渗透到服务器内部
,服务器主板不再是普通PCB
,而是光纤背板。芯片和芯片之间
,全光通道
。芯片内部,搞不好也是光。 路由调度上
,以后都是AI的天下,网络流量啊协议啊全部都是AI接管,不需要人为干预。大量的通信工程师下岗。 好了,关于数据中心通信网络的介绍就是这么多。不知道大家这次有没有看明白
? 没看明白的话,就再看一次
。








